论文标题

构图过程中的物理信息机器学习合金设计:形状内存合金演示

Physics-informed machine learning for composition-process-property alloy design: shape memory alloy demonstration

论文作者

Liu, Sen, Kappes, Branden B., Amin-ahmadi, Behnam, Benafan, Othmane, Zhang, Xiaoli, Stebner, Aaron P.

论文摘要

机器学习(ML)显示可预测新的合金及其性能,以高维,多目标设计空间,以考虑化学,多步处理路线和表征方法的变化。显示出具有物理信息的特色工程方法,可以使原本表现不佳的ML模型能够使用相同的数据表现良好。具体而言,以前设计的基于合金化学的元素特征与新设计的热处理过程功能结合在一起。新功能首先转换热处理参数数据,因为它是使用已知的非线性数学关系记录的,以描述合金中相变的热力学和动力学。 ML模型用于预测设计的能力是使用盲目预测验证的。组成 - 过程 - 形状记忆合金(SMA)热滞后的属性关系,其通过多个熔融溶剂化 - 实体化解决 - 沉淀 - 沉积处理阶段变化,除了SMA的平均转化温度外,还捕获了形状的微观结构。这种高度加工的合金表现出的滞后定量模型表明,ML模型可以设计数十年来挑战基于物理的建模方法的物理复杂性的能力。

Machine learning (ML) is shown to predict new alloys and their performances in a high dimensional, multiple-target-property design space that considers chemistry, multi-step processing routes, and characterization methodology variations. A physics-informed featured engineering approach is shown to enable otherwise poorly performing ML models to perform well with the same data. Specifically, previously engineered elemental features based on alloy chemistries are combined with newly engineered heat treatment process features. The new features result from first transforming the heat treatment parameter data as it was previously recorded using nonlinear mathematical relationships known to describe the thermodynamics and kinetics of phase transformations in alloys. The ability of the ML model to be used for predictive design is validated using blind predictions. Composition - process - property relationships for thermal hysteresis of shape memory alloys (SMAs) with complex microstructures created via multiple melting-homogenization-solutionization-precipitation processing stage variations are captured, in addition to the mean transformation temperatures of the SMAs. The quantitative models of hysteresis exhibited by such highly processed alloys demonstrate the ability for ML models to design for physical complexities that have challenged physics-based modeling approaches for decades.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源