论文标题

钢的机械特性的机器学习

Machine Learning of Mechanical Properties of Steels

论文作者

Xiong, Jie, Zhang, Tong-Yi, Shi, San-Qiang

论文摘要

机械性能对于结构材料至关重要。分析了有关钢的四个机械性能的360个数据,即。从NIMS数据库中选择疲劳强度,拉伸强度,断裂强度和硬度,包括碳钢和低合金钢。在360个数据上应用了五种机器学习算法,以预测机械性能,随机森林回归说明了最佳性能。该特征选择是由随机森林和符号回归进行的,导致回火温度的四个最重要特征,以及碳,铬和钼的合金元素符合钢的机械性能。此外,数学表达式是通过符号回归生成的,并且表达式明确预测了四种机械性能中的每一个如何随四个最重要的特征定量变化。目前的工作证明了符号回归的巨大潜力在发现新的高级材料中。

The mechanical properties are essential for structural materials. The analyzed 360 data on four mechanical properties of steels, viz. fatigue strength, tensile strength, fracture strength, and hardness, are selected from the NIMS database, including carbon steels, and low-alloy steels. Five machine learning algorithms were applied on the 360 data to predict the mechanical properties and random forest regression illustrates the best performance. The feature selection was conducted by random forest and symbolic regressions, leading to the four most important features of tempering temperature, and alloying elements of carbon, chromium, and molybdenum to the mechanical properties of steels. Besides, mathematic expressions were generated via symbolic regression, and the expressions explicitly predict how each of the four mechanical properties varies quantitatively with the four most important features. The present work demonstrates the great potential of symbolic regression in the discovery of novel advanced materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源