论文标题

较高同源代数的结构运输

Transport of structure in higher homological algebra

论文作者

Bennett-Tennenhaus, Raphael, Shah, Amit

论文摘要

我们填补了有关(n+2),n- excact,n- ext,n-亚伯式和n外观类别的文献中有关“结构运输”的空白,出现在(经典和更高的)同源代数中。作为我们主要结果的应用,我们表明,这类类别之一的骨骼以规范的方式继承了相同的结构,直到等效性。特别是,因此,弱(N+2)类别的骨骼实际上是我们所说的强(n+2)类别的骨骼。当n = 1时,这阐明了群集类别的定义的技术问题。我们还介绍了n外观类别之间的N外函数的概念。当相关类别为(n+2) - 当相关类别是n-脱离时,这将恢复(n+2)函数的定义(n+2),并且确切函数的较高类似物的定义。

We fill a gap in the literature regarding `transport of structure' for (n+2)-angulated, n-exact, n-abelian and n-exangulated categories appearing in (classical and higher) homological algebra. As an application of our main results, we show that a skeleton of one of these kinds of categories inherits the same structure in a canonical way, up to equivalence. In particular, it follows that a skeleton of a weak (n+2)-angulated category is in fact what we call a strong (n+2)-angulated category. When n=1 this clarifies a technical concern with the definition of a cluster category. We also introduce the notion of an n-exangulated functor between n-exangulated categories. This recovers the definition of an (n+2)-angulated functor when the categories concerned are (n+2)-angulated, and the higher analogue of an exact functor when the categories concerned are n-exact.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源