论文标题
深度强化学习基于富裕的分布网格中的保护
Deep Reinforcement Learning-BasedRobust Protection in DER-Rich Distribution Grids
论文作者
论文摘要
本文介绍了具有许多分布式能源(DERS)的电源分配系统中的基于强化学习的深度架构的概念。存在分布式生成,电源相互接口设备和故障阻抗的存在阻碍了广泛使用的过电流保护方案的性能。在本文中,提出了一种基于加强学习的方法来设计和实施分销网格中的保护性继电器。所使用的特定算法是长期的短期内存(LSTM)增强的深神经网络,高度准确,无通信且易于实现。在IEEE 34节点测试馈线上,在OPENDSS模拟中测试了所提出的继电器设计,并且从失败率,稳健性和响应速度方面表现出了比传统过电流保护的表现要高得多。
This paper introduces the concept of Deep Reinforcement Learning based architecture for protective relay design in power distribution systems with many distributed energy resources (DERs). The performance of widely-used overcurrent protection scheme is hindered by the presence of distributed generation, power electronic interfaced devices and fault impedance. In this paper, a reinforcement learning-based approach is proposed to design and implement protective relays in the distribution grid. The particular algorithm used is an Long Short-Term Memory (LSTM) enhanced deep neural network that is highly accurate, communication-free and easy to implement. The proposed relay design is tested in OpenDSS simulation on the IEEE 34-node test feeder and demonstrated much more superior performance over traditional overcurrent protection from the aspect of failure rate, robustness and response speed.