论文标题
通过不确定性学习的基于无人机的RGB - 信号跨模式车辆检测
Drone-based RGB-Infrared Cross-Modality Vehicle Detection via Uncertainty-Aware Learning
论文作者
论文摘要
基于无人机的车辆检测旨在在空中图像中查找车辆位置和类别。它赋予了智能城市交通管理和灾难救援。研究人员在这一领域做出了巨大的努力,并取得了长足的进步。然而,当物体难以区分时,尤其是在弱光条件下,这仍然是一个挑战。为了解决此问题,我们构建了一个大规模的无人机RGB - 融资车辆检测数据集,该数据集称为无人机。我们的无人机收集了28、439个RGB - 信号图像对,涵盖了白天到黑夜的城市道路,住宅区,停车场和其他场景。由于RGB和红外图像之间的差距很大,跨模式图像既提供有效的信息又提供冗余信息。为了解决这一难题,我们进一步提出了一种不确定性感知的跨模式检测(UA-CMDET)框架,以从跨模式图像中提取互补信息,这可以显着改善在低光条件下的检测性能。不确定性感知的模块(UAM)旨在量化每种模式的不确定性权重,这是由联合(IOU)和RGB照明值的交叉模式相交计算得出的。此外,我们设计了一种照明感知的跨模式非最大抑制算法,以更好地在推理阶段整合模态特异性信息。无人机数据集上的广泛实验证明了跨模型车辆检测方法的灵活性和有效性。数据集可以从https://github.com/visdrone/dronevehicle下载。
Drone-based vehicle detection aims at finding the vehicle locations and categories in an aerial image. It empowers smart city traffic management and disaster rescue. Researchers have made mount of efforts in this area and achieved considerable progress. Nevertheless, it is still a challenge when the objects are hard to distinguish, especially in low light conditions. To tackle this problem, we construct a large-scale drone-based RGB-Infrared vehicle detection dataset, termed DroneVehicle. Our DroneVehicle collects 28, 439 RGB-Infrared image pairs, covering urban roads, residential areas, parking lots, and other scenarios from day to night. Due to the great gap between RGB and infrared images, cross-modal images provide both effective information and redundant information. To address this dilemma, we further propose an uncertainty-aware cross-modality vehicle detection (UA-CMDet) framework to extract complementary information from cross-modal images, which can significantly improve the detection performance in low light conditions. An uncertainty-aware module (UAM) is designed to quantify the uncertainty weights of each modality, which is calculated by the cross-modal Intersection over Union (IoU) and the RGB illumination value. Furthermore, we design an illumination-aware cross-modal non-maximum suppression algorithm to better integrate the modal-specific information in the inference phase. Extensive experiments on the DroneVehicle dataset demonstrate the flexibility and effectiveness of the proposed method for crossmodality vehicle detection. The dataset can be download from https://github.com/VisDrone/DroneVehicle.