论文标题
3D量子厅效应的电荷密度波机理的理论
Theory for the Charge-Density-Wave Mechanism of 3D Quantum Hall Effect
论文作者
论文摘要
最近在Zrte $ _5 $ [Tang等,Nature 569,537(2019)]中观察到了3D量子厅效应的电荷密度波(CDW)机制。与以前的情况不同,CDW在一维(1D)的Landau水平上形成,这在很大程度上取决于磁场。但是,它的理论仍然缺乏。我们开发了3D量子霍尔效应的CDW机理的理论。该理论可以捕获实验中的主要特征。我们发现磁场诱导二阶相变为CDW相。我们发现电子相互作用而不是电子 - 电子相互作用主导了顺序参数。我们从非OHMIC I-V关系中提取电子偶联常数。我们指出了实验中的相应量合并的CDW交叉。更重要的是,我们的理论探讨了一种罕见的情况,在这种情况下,磁场可以在一个方向上诱导订单参数相变,但在其他两个方向上拓扑相变,都取决于一个磁场。
The charge-density-wave (CDW) mechanism of the 3D quantum Hall effect has been observed recently in ZrTe$_5$ [Tang et al., Nature 569, 537 (2019)]. Different from previous cases, the CDW forms on a one-dimensional (1D) band of Landau levels, which strongly depends on the magnetic field. However, its theory is still lacking. We develop a theory for the CDW mechanism of 3D quantum Hall effect. The theory can capture the main features in the experiments. We find a magnetic field induced second-order phase transition to the CDW phase. We find that electron-phonon interactions, rather than electron-electron interactions, dominate the order parameter. We extract the electron-phonon coupling constant from the non-Ohmic I-V relation. We point out a commensurate-incommensurate CDW crossover in the experiment. More importantly, our theory explores a rare case, in which a magnetic field can induce an order-parameter phase transition in one direction but a topological phase transition in other two directions, both depend on one magnetic field.