论文标题

在$ l^1 \ times w^{1,2} $中的初始数据的立即平滑和全局解决方案中的Keller-Segel系统中,具有逻辑术语在2D中

Immediate smoothing and global solutions for initial data in $L^1\times W^{1,2}$ in a Keller-Segel system with logistic terms in 2D

论文作者

Lankeit, Johannes

论文摘要

本文讨论了逻辑凯勒 - 塞格模型\ [ 开始{case} u_t =ΔU -χ\ nabla \ cdot(u \ nabla v) +κU-μU^2,\\ \ \ \\ v_t =ΔV -v + u \ end {case} \] 在有界的二维域(具有均匀的Neumann边界条件和参数$χ,κ\ in \ Mathbb {r} $和$μ> 0 $)中,并表明任何非止境初始数据$(u_0,v_0,v_0)\ in L^1 \ in l^1 \ times w^{1,2} $ songe to Plooke in $ \barΩ\ times(0,\ infty)$。

This article deals with the logistic Keller-Segel model \[ \begin{cases} u_t = Δu - χ\nabla\cdot(u\nabla v) + κu - μu^2, \\ \\ v_t = Δv - v + u \end{cases} \] in bounded two-dimensional domains (with homogeneous Neumann boundary conditions and for parameters $χ, κ\in \mathbb{R}$ and $μ>0$), and shows that any nonnegative initial data $(u_0,v_0)\in L^1\times W^{1,2}$ lead to global solutions that are smooth in $\barΩ\times(0,\infty)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源