论文标题
UMD空间中的Carleson差异操作员
Variational Carleson operators in UMD spaces
论文作者
论文摘要
我们证明了$ l^p $ - 结合了Carleson运算符的功能,可用于中间UMD空间。这提供了有关矢量值函数部分傅立叶积分收敛速率的定量信息。我们的证明依靠波数据包嵌入到时间频率尺寸空间$ \ mathbb {r}^3 _+$的范围,这是本文的重点。
We prove $L^p$-boundedness of variational Carleson operators for functions valued in intermediate UMD spaces. This provides quantitative information on the rate of convergence of partial Fourier integrals of vector-valued functions. Our proof relies on bounds on wave packet embeddings into outer Lebesgue spaces on the time-frequency-scale space $\mathbb{R}^3_+$, which are the focus of this paper.