论文标题
关于1D波方程的边界可控性和稳定性
On boundary controllability and stabilizability of the 1D wave equation in non-cylindrical domain
论文作者
论文摘要
在本文中,我们处理了形式的非圆柱形结构域中1D波方程的边界可控性和边界稳定性($α(t)<x <β(t)$)。通过使用特征方法,我们在对边界函数的自然假设下证明了1D波方程是可以从边界的一侧控制且可以稳定的。此外,对控制功能和溶液的衰减率明确给出
In this paper, we deal with the boundary controllability and boundary stabilizability of the 1D wave equation in non-cylindrical domain of the form ($α(t)<x<β(t)$). By using the characteristics method, we prove under a natural assumption on the boundary functions that the 1D wave equation is controllable and stabilizable from one side of the boundary. Furthermore, the control function and the decay rate of solution are given explicitly