论文标题
螺旋星系中局部与全球恒星形成局部结合:差速器旋转的效果
Coupling local to global star formation in spiral galaxies: the effect of differential rotation
论文作者
论文摘要
恒星形成是塑造星系的关键因素之一。从模拟和观察结果中,从单个巨型分子云以及“全球”范围内的星系范围(例如Kennicutt-Schmidt Law)中,从模拟和观察值中得出了相对较好的理解。但是,仍然对如何将全球连接到本地恒星形成量表以及这种连接是否可能完全有可能。在这里,我们分析了空间解析的运动学和星形形成速率密度$σ_{sfr} $,用于使用我们自己的光学观测来获得的17个附近的螺旋星系的组合样品,用于9 $ h $α$,用于9个星系中的H $α$,用于9个星系和中性氢无线电观测值,与8件类别的多型波长分布分析相结合,用于8个项目,从事8个项目。我们表明,螺旋星系中的方位角平均恒星形成速率密度在几百个parsecs的尺度上与由于银河盘的差异旋转而导致的巨型分子云碰撞的动能成正比。使用两个Oort参数A和B作为$ \ log(σ_{sfr} / sfr_ {tot})\ propto \ log \ log [2 a^2+ 5 b^2] $从旋转曲线中计算出此能量。碰撞的总动能是由剪切速度与A成正比的剪切速度以及与涡度成比例成正比的旋转能的定义。因此,剪切并不能充当云塌陷的稳定因子,从而减少恒星形成,而是通过增强碰撞动力的能量来减少恒星的形成。该结果可以是一种工具,通过它可以仅使用旋转曲线预测恒星形成表面密度的径向分布。
Star formation is one of the key factors that shapes galaxies. This process is relatively well understood from both simulations and observations on a small "local" scale of individual giant molecular clouds and also on a "global" galaxy-wide scale (e.g. the Kennicutt-Schmidt law). However, there is still no understanding on how to connect global to local star formation scales and whether this connection is at all possible. Here we analyze spatially resolved kinematics and the star formation rate density $Σ_{SFR}$ for a combined sample of 17 nearby spiral galaxies obtained using our own optical observations in H$α$ for 9 galaxies and neutral hydrogen radio observations combined with a multi-wavelength spectral energy distribution analysis for 8 galaxies from the THINGS project. We show that the azimuthally averaged normalized star formation rate density in spiral galaxies on a scale of a few hundred parsecs is proportional to the kinetic energy of giant molecular cloud collisions due to differential rotation of the galactic disc. This energy is calculated from the rotation curve using the two Oort parameters A and B as $\log (Σ_{SFR} / SFR_{tot}) \propto \log[2 A^2+ 5 B^2]$. The total kinetic energy of collision is defined by the shear velocity that is proportional to A and the rotational energy of a cloud proportional to the vorticity B. Hence, shear does not act as a stabilizing factor for the cloud collapse thus reducing star formation but rather increases it by boosting the kinetic energy of collisions. This result can be a tool through which one can predict a radial distribution of star formation surface density using only a rotation curve.