论文标题
磁磁重新连接期间的多尺度耦合:电子和离子扩散区域之间的接口
Multi-scale coupling during magnetopause reconnection: the interface between the electron and ion diffusion regions
论文作者
论文摘要
当飞机间分离超过上游离子惯性长度时,磁层多尺度(MMS)遇到了主要的低纬度磁路重新连接位点。确定了离子扩散区域(IDR)的经典特征,包括亚离子 - alfvénicdemagnetized离子排气,超级离子 - alfvénicAmagnitatizationElectron Electon和Hall电磁场。磁磁带和磁层分隔之间的开头为$ 30^\ Circ \ PM5^\ Circ $。排气优先膨胀阳光,使磁石取代。重新连接的磁通量的强烈堆积发生在磁轴分离质和磁磁原之间,在离子和电子尺度之间的狭窄通道中间。堆积的强度(0.3-0.5的归一化值)与磁胶合相对于整体重新连接坐标的较大角度一致。 MMS-4比其他三个航天器更接近X线的两个离子惯性长度,观察到堆积中强烈的电子主导电流和动力学到电磁磁场的能量转换。 MMS-1,2和3没有观察到强烈的电流或颗粒到场能的转化率,但确实观察到堆积物,表明生成区域的边缘包含在四面体内。与粒子中的模拟的比较表明,磁磁的电子电流和较大的倾斜角是不对称霍尔效应的相互联系的特征。在分离质和磁磁磁强度之间,高密度流动的磁石电子制动并转向流出方向,将能量赋予正常磁场并产生堆积。研究结果表明,电子动力学可能对离子扩散区域内的磁场结构有重要影响。
Magnetospheric Multiscale (MMS) encountered the primary low-latitude magnetopause reconnection site when the inter-spacecraft separation exceeded the upstream ion inertial length. Classical signatures of the ion diffusion region (IDR), including a sub-ion-Alfvénic de-magnetized ion exhaust, a super-ion-Alfvénic magnetized electron exhaust, and Hall electromagnetic fields, are identified. The opening angle between the magnetopause and magnetospheric separatrix is $30^\circ\pm5^\circ$. The exhaust preferentially expands sunward, displacing the magnetosheath. Intense pileup of reconnected magnetic flux occurs between the magnetosheath separatrix and the magnetopause in a narrow channel intermediate between the ion and electron scales. The strength of the pileup (normalized values of 0.3-0.5) is consistent with the large angle at which the magnetopause is inclined relative to the overall reconnection coordinates. MMS-4, which was two ion inertial lengths closer to the X-line than the other three spacecraft, observed intense electron-dominated currents and kinetic-to-electromagnetic-field energy conversion within the pileup. MMS-1, 2, and 3 did not observe the intense currents nor the particle-to-field energy conversion but did observe the pileup, indicating that the edge of the generation region was contained within the tetrahedron. Comparisons with particle-in-cell simulations reveal that the electron currents and large inclination angle of the magnetopause are interconnected features of the asymmetric Hall effect. Between the separatrix and the magnetopause, high-density inflowing magnetosheath electrons brake and turn into the outflow direction, imparting energy to the normal magnetic field and generating the pileup. The findings indicate that electron dynamics are likely an important influence on the magnetic field structure within the ion diffusion region.