论文标题
嗜热夜液晶体中铁电的第一原理实验证明:自发极性结构域和引人注目的电磁
First-Principles Experimental Demonstration of Ferroelectricity in a Thermotropic Nematic Liquid Crystal: Spontaneous Polar Domains and Striking Electro-Optics
论文作者
论文摘要
我们报告了先前报道的CALAMITIC化合物4- [((4-硝基苯基)羰基]苯基2,4-二甲氧基苯甲酸酯(rm734)的结构和对施加的电场的响应的实验确定。我们利用它的电镜来可视化永久性极化密度的外观(在没有应用场)的情况下,在相反的极度方向的不同域中表现为自发折断的对称性。极化逆转是由场诱导的域壁运动介导的,这使得该相铁电是一种3D单轴列,具有自发的,可重新定向的,在局部与导演平行的极化。该极化密度在低温值为〜6微圆柱/cm-sqd的低温值下饱和,这是有机材料或任何流体的有史以来最大的。这种极化与固态铁电的偏振相当,并且接近通过假设列中分子长轴的完美的极性比对获得的平均值。我们发现由超低施加场(E〜1V/cm)驱动的许多壮观的光学和流体动力效应,这些效应是由大极化与夜间复发性和流动的耦合产生的。极化电荷的静电自相互作用使从列型相平均场状和弱的一阶变化,并控制铁电相的主场结构。原子分子动力学仿真揭示了有利于铁电序的短距离分子相互作用,包括将头到尾关联到具有极性横向相关性的极性的,类似链的链状组件中的趋势。这些结果表明,基于对分子静电相互作用的理解,发展和开发的增强,具有变革性新的列神经科学和技术的重要潜力。
We report the experimental determination of the structure and response to applied electric field of the lower-temperature nematic phase of the previously reported calamitic compound 4-[(4-nitrophenoxy)carbonyl]phenyl2,4-dimethoxybenzoate (RM734). We exploit its electro-optics to visualize the appearance, in the absence of applied field, of a permanent electric polarization density, manifested as a spontaneously broken symmetry in distinct domains of opposite polar orientation. Polarization reversal is mediated by field-induced domain wall movement, making this phase ferroelectric, a 3D uniaxial nematic having a spontaneous, reorientable, polarization locally parallel to the director. This polarization density saturates at a low temperature value of ~ 6 microcoulombs/cm-sqd, the largest ever measured for an organic material or for any fluid. This polarization is comparable to that of solid state ferroelectrics, and is close to the average value obtained by assuming perfect, polar alignment of molecular long axes in the nematic. We find a host of spectacular optical and hydrodynamic effects driven by ultra-low applied field (E~1V/cm), produced by the coupling of the large polarization to nematic birefringence and flow. Electrostatic self-interaction of the polarization charge renders the transition from the nematic phase mean-field-like and weakly first-order, and controls the director field structure of the ferroelectric phase. Atomistic molecular dynamics simulation reveals short-range polar molecular interactions that favor ferroelectric ordering, including a tendency for head-to-tail association into polar, chain-like assemblies having polar lateral correlations. These results indicate a significant potential for transformative new nematic science and technology based on the enhanced understanding, development, and exploitation of molecular electrostatic interaction.