论文标题
崇高的对应原则,不变的手段和应用
An ergodic correspondence principle, invariant means and applications
论文作者
论文摘要
由于Hindman引起的一个定理指出,如果$ e $是$ \ mathbb {n} $的子集,$ d^*(e)> 0 $,其中$ d^*$表示上层banach密度$ d^*\ left(\ bigCup_ {i = 1}^n(e-i)\ right)> 1- \ varepsilon $。奇怪的是,如果一个人用上部密度$ \ bar {d} $替换上层Banach密度$ d^*$,则该结果将无法得出。 Hindman的定理最初是由合并的,允许使用Furstenberg的信函原理的厄运版本进行快速简便的证明。在本文中,我们建立了一般性amenable(半)组的厄格尔古德·弗斯滕伯格(Ergodic Furstenberg)的对应原理的变体,并获得了一些新的应用,其中包括对Hindman定理的改进和概括,以及可计数可计算的几乎可计算的最低周期性群体的特征。
A theorem due to Hindman states that if $E$ is a subset of $\mathbb{N}$ with $d^*(E)>0$, where $d^*$ denotes the upper Banach density, then for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $d^*\left(\bigcup_{i=1}^N(E-i)\right) > 1-\varepsilon$. Curiously, this result does not hold if one replaces the upper Banach density $d^*$ with the upper density $\bar{d}$. Originally proved combinatorially, Hindman's theorem allows for a quick and easy proof using an ergodic version of Furstenberg's correspondence principle. In this paper, we establish a variant of the ergodic Furstenberg's correspondence principle for general amenable (semi)-groups and obtain some new applications, which include a refinement and a generalization of Hindman's theorem and a characterization of countable amenable minimally almost periodic groups.