论文标题

主动动态网络中的分布式计算和重新配置

Distributed Computation and Reconfiguration in Actively Dynamic Networks

论文作者

Michail, Othon, Skretas, George, Spirakis, Paul G.

论文摘要

在本文中,我们研究了可以主动修改其通信网络的分布式实体系统。这引起了分布式算法,除了通信外,还可以利用网络重新配置以执行给定的任务。同时,分布式任务本身现在可能需要从给定的初始网络$ g_s $到目标网络$ g_f $的全局重新配置,从具有一些良好属性(例如小直径)的网络家族。有了相当强大的计算实体,有一种简单的算法将任何$ g_s $转换为$ o(\ log n)$时间的跨度集团。然后,该算法可以在一轮中计算输入上的任何全局函数,并重新配置任何目标网络。我们认为,这种策略对于实际应用是不切实际的。在实际的动态网络中,与创建和维护连接相关的成本。为了正式捕获此类成本,我们定义了三个边缘复合度度量:\ emph {Total Edge Activations},\ emph {每回合}的最大激活边缘和\ emph {节点的最大激活度}。上面突出显示的集团形成策略最大化了所有这些策略。我们的目标是改进实现(poly)log $(n)$时间的算法,同时最大程度地减少将任何$ g_s $转换为$ g_f $ diameter(poly)log(n)$的一般任务的边缘复杂性。我们提供三种分布式算法。第一个以$ o(\ log n)$时间运行,最多$ 2N $每回合,最佳的$ O(n \ log n)$ edge激活,最高度$ n-1 $和直径2的目标网络2。第二成就界限的目标网络限制了$ garithmic的时间和总计$ groungarithmic因子$ nogion $ nogials $ nogials $ of nog n $ $ o($ o)$ o $ o($ o)$ o($ o)$ o($ o)$ O.我们的第三个算法表明,如果我们将最高学位稍微提高到polylog $(n)$,那么我们可以达到$ O(\ log^2 n)$的运行时间。

In this paper, we study systems of distributed entities that can actively modify their communication network. This gives rise to distributed algorithms that apart from communication can also exploit network reconfiguration in order to carry out a given task. At the same time, the distributed task itself may now require global reconfiguration from a given initial network $G_s$ to a target network $G_f$ from a family of networks having some good properties, like small diameter. With reasonably powerful computational entities, there is a straightforward algorithm that transforms any $G_s$ into a spanning clique in $O(\log n)$ time. The algorithm can then compute any global function on inputs and reconfigure to any target network in one round. We argue that such a strategy is impractical for real applications. In real dynamic networks there is a cost associated with creating and maintaining connections. To formally capture such costs, we define three edge-complexity measures: the \emph{total edge activations}, the \emph{maximum activated edges per round}, and the \emph{maximum activated degree of a node}. The clique formation strategy highlighted above, maximizes all of them. We aim at improved algorithms that achieve (poly)log$(n)$ time while minimizing the edge-complexity for the general task of transforming any $G_s$ into a $G_f$ of diameter (poly)log$(n)$. We give three distributed algorithms. The first runs in $O(\log n)$ time, with at most $2n$ active edges per round, an optimal total of $O(n\log n)$ edge activations, a maximum degree $n-1$, and a target network of diameter 2. The second achieves bounded degree by paying an additional logarithmic factor in time and in total edge activations and gives a target network of diameter $O(\log n)$. Our third algorithm shows that if we slightly increase the maximum degree to polylog$(n)$ then we can achieve a running time of $o(\log^2 n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源