论文标题
通过随机碎屑绕岩石舍入的时间尺度
Time Scales for Rounding of Rocks through Stochastic Chipping
论文作者
论文摘要
对于3D几何形状,我们认为石头(建模为凸多面体)可能是在依次去除材料的随机取向和深度的平面切片中,最终产生平滑而圆形的(即球形)形状。前瞻性切片暴露的区域中呈指数衰减的接受概率为消除裂缝事件中材料去除的物理基础。通过各种定量措施,在稳定状态下,我们发现了韧性参数$γ$与完美球形形状的偏差衰减。我们最初以立方体的形式以及通过沿随机断裂平面多次切割常规固体而产生的石头形状的时间演变。对于前者,我们发现两组二阶结构相变具有临界行为的通常标志。第一个涉及与父固体原始的相同方面的同时损失,而其中的第二个涉及转向球形轮廓。然而,对于单分散的不规则固体,原始方面的损失不是同时出现的,而是出现在阶段。在最初不规则的石头的情况下,强烈的障碍掩盖了个体的结构过渡,相关可观察到的时间相对于时间而言是平稳的。更广泛地说,我们发现在$γ$中,显着的时间量表四边形。我们使用变量对剩余体积的普遍依赖性来计算各种侵蚀场景的时间因变量,并带有单个风化方案的结果,例如骨折接受概率取决于前瞻性新面部的相对面积。我们计算了达到结构里程碑的时间尺度,获得了封闭形式的近似表达,从而从上方产生了直接模拟。
For 3D geometries, we consider stones (modeled as convex polyhedra) subject to weathering with planar slices of random orientation and depth successively removing material, ultimately yielding smooth and round (i.e. spherical) shapes. An exponentially decaying acceptance probability in the area exposed by a prospective slice provides a stochastically driven physical basis for the removal of material in fracture events. With a variety of quantitative measures, in steady state we find a power law decay of deviations in a toughness parameter $γ$ from a perfect spherical shape. We examine the time evolution of shapes for stones initially in the form of cubes as well as irregular fragments created by cleaving a regular solid many times along random fracture planes. In the case of the former, we find two sets of second order structural phase transitions with the usual hallmarks of critical behavior. The first involves the simultaneous loss of facets original to the parent solid, while the second of these involves a shift to a spherical profile. Nevertheless, for mono-dispersed irregular solids, the loss of primordial facets is not simultaneous but occurs in stages. In the case of initially irregular stones, strong disorder obscures individual structural transitions, and relevant observables are smooth with respect to time. More broadly, we find that salient times scale quadratically in $γ$. We use the universal dependence of variables on the volume remaining to calculate time dependent variables for a variety of erosion scenarios with results from a single weathering scheme such as the case in which the fracture acceptance probability depends on the relative area of the prospective new face. We calculate time scales for the attainment of structural milestones, obtaining a closed form approximate expression which bounds direct simulation results from above.