论文标题
从Kähler歧管到投影空间的Meromorthic映射的有限性
Finiteness of meromorphic mappings from Kähler manifold into projective space
论文作者
论文摘要
本文的目的是证明完整连接的Kähler歧管的Meromormormorphic映射的有限定理中的射影空间,在不计算多重性的情况下,几乎没有次级位置的超级平面平面,其中所有具有多重性的零以外的零零均超过一定数量。我们的结果是一些最近的扩展和概括。
The purpose of this paper is to prove the finiteness theorems for meromorphic mappings of a complete connected Kähler manifold into projective space sharing few hyperplanes in subgeneral position without counting multiplicity, where all zeros with multiplicities more than a certain number are omitted. Our results are extensions and generalizations of some recent ones.