论文标题

学习和转移半自治远程注射中首选援助策略的知识

Learn and Transfer Knowledge of Preferred Assistance Strategies in Semi-autonomous Telemanipulation

论文作者

Tao, Lingfeng, Bowman, Michael, Zhou, Xu, Zhang, Jiucai, Zhang, Xiaoli

论文摘要

使机器人能够提供有效的援助,但仍在容纳操作员的命令以进行对象的远程注射非常具有挑战性,因为机器人的辅助行动并不总是直觉的,对于人类操作员而言,人类的行为和偏好有时对机器人解释是模棱两可的。尽管正在开发各种援助方法来从不同的优化角度提高控制质量,但问题仍然在确定满足远程触发任务和操作员偏好的良好运动约束的适当方法中。为了解决这些问题,我们开发了一种新颖的偏好感辅助知识学习方法。援助偏好模型了解人类首选的援助,而舞台模型更新方法可确保学习稳定性,同时处理人类偏好数据的歧义。这样的偏好意识辅助知识使远程手工的机器人手可以为操纵成功提供更为活跃但优先的援助。我们还开发了知识转移方法,以在不同的机器人手部结构上转移偏好知识,以避免广泛的机器人特定训练。已经进行了触发三指手和2手指手的实验,以使用,移动和手掌握杯子。结果表明,这些方法使机器人能够有效地学习偏好知识,并以较少的培训工作使机器人之间的知识转移。

Enabling robots to provide effective assistance yet still accommodating the operator's commands for telemanipulation of an object is very challenging because robot's assistive action is not always intuitive for human operators and human behaviors and preferences are sometimes ambiguous for the robot to interpret. Although various assistance approaches are being developed to improve the control quality from different optimization perspectives, the problem still remains in determining the appropriate approach that satisfies the fine motion constraints for the telemanipulation task and preference of the operator. To address these problems, we developed a novel preference-aware assistance knowledge learning approach. An assistance preference model learns what assistance is preferred by a human, and a stagewise model updating method ensures the learning stability while dealing with the ambiguity of human preference data. Such a preference-aware assistance knowledge enables a teleoperated robot hand to provide more active yet preferred assistance toward manipulation success. We also developed knowledge transfer methods to transfer the preference knowledge across different robot hand structures to avoid extensive robot-specific training. Experiments to telemanipulate a 3-finger hand and 2-finger hand, respectively, to use, move, and hand over a cup have been conducted. Results demonstrated that the methods enabled the robots to effectively learn the preference knowledge and allowed knowledge transfer between robots with less training effort.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源