论文标题
n = 4 bfkl状态中的量子光谱曲线
N=4 SYM Quantum Spectral Curve in BFKL regime
论文作者
论文摘要
我们回顾了量子光谱曲线(QSC)方法在n = 4超对称阳米尔斯理论中的应用中的应用。 QSC基于ADS $ _5 $/CFT $ _4 $双重性的量子集成性,最初是作为研究平面中N = 4 Sym中本地操作员频谱的工具开发的。我们解释了如何将QSC应用于BFKL限制,这需要在Spin $ S $中进行非平凡的分析延续,并将初始构造扩展到非本地光线运算符。我们简要审查了高精度非扰动数值解决方案和通过这种方法产生的分析扰动数据。我们还将QSC构造的一个简单示例描述为BFKL限制中的领先顺序。我们表明,QSC在此限制中大大简化了Q-Korchemsky Baxter方程的Q-函数。最后,我们回顾了Fishnet CFT的最新结果,该结果与Lipatov的可相互作用的可相互作用的自旋链带来了许多相似之处。
We review the applications of the Quantum Spectral Curve (QSC) method to the Regge (BFKL) limit in N=4 supersymmetric Yang-Mills theory. QSC, based on quantum integrability of the AdS$_5$/CFT$_4$ duality, was initially developed as a tool for the study of the spectrum of anomalous dimensions of local operators in the N=4 SYM in the planar, $N_c\to\infty$ limit. We explain how to apply the QSC for the BFKL limit, which requires non-trivial analytic continuation in spin $S$ and extends the initial construction to non-local light-ray operators. We give a brief review of high precision non-perturbative numerical solutions and analytic perturbative data resulting from this approach. We also describe as a simple example of the QSC construction the leading order in the BFKL limit. We show that the QSC substantially simplifies in this limit and reduces to the Faddeev-Korchemsky Baxter equation for Q-functions. Finally, we review recent results for the Fishnet CFT, which carries a number of similarities with the Lipatov's integrable spin chain for interacting reggeized gluons.