论文标题

对抗机器学习:贝叶斯观点

Adversarial Machine Learning: Bayesian Perspectives

论文作者

Insua, David Rios, Naveiro, Roi, Gallego, Victor, Poulos, Jason

论文摘要

对抗机器学习(AML)正在成为旨在保护机器学习(ML)系统免受安全威胁的主要领域:在某些情况下,可能有对手可以积极操纵输入数据来愚弄学习系统。这创建了ML系统可能面临的新的安全漏洞,以及一个新的理想属性,称为“对抗性鲁棒性”对于基于ML输出的信任操作至关重要。 AML中的大多数工作都是建立在学习系统与对手之间的冲突的游戏理论建模上的,该模型已准备好操纵输入数据。这假设每个代理都知道对手的利益和不确定性判断,从而促进了基于纳什均衡的推论。但是,在AML典型的安全场景中,这种常识的假设是不现实的。在回顾了这种游戏理论方法之后,我们讨论了贝叶斯观点在捍卫基于ML的系统时提供的好处。我们展示了贝叶斯方法如何使我们明确地对对手的信仰和利益的不确定性进行建模,从而放松不切实际的假设,并提供更强大的推论。我们在监督的学习环境中说明了这种方法,并确定了相关的未来研究问题。

Adversarial Machine Learning (AML) is emerging as a major field aimed at protecting machine learning (ML) systems against security threats: in certain scenarios there may be adversaries that actively manipulate input data to fool learning systems. This creates a new class of security vulnerabilities that ML systems may face, and a new desirable property called adversarial robustness essential to trust operations based on ML outputs. Most work in AML is built upon a game-theoretic modelling of the conflict between a learning system and an adversary, ready to manipulate input data. This assumes that each agent knows their opponent's interests and uncertainty judgments, facilitating inferences based on Nash equilibria. However, such common knowledge assumption is not realistic in the security scenarios typical of AML. After reviewing such game-theoretic approaches, we discuss the benefits that Bayesian perspectives provide when defending ML-based systems. We demonstrate how the Bayesian approach allows us to explicitly model our uncertainty about the opponent's beliefs and interests, relaxing unrealistic assumptions, and providing more robust inferences. We illustrate this approach in supervised learning settings, and identify relevant future research problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源