论文标题

通过上下文的多军匪徒在线住宅需求响应

Online Residential Demand Response via Contextual Multi-Armed Bandits

论文作者

Chen, Xin, Nie, Yutong, Li, Na

论文摘要

住宅负载具有巨大的潜力,可以通过需求响应(DR)计划提高电力系统的效率和可靠性。住宅DR的一个主要挑战是处理未知和不确定的客户行为。以前的工作使用学习技术来预测客户DR行为,而时变环境因素的影响通常被忽略,这可能导致预测不准确和负载效率低下。在本文中,我们考虑了住宅DR问题,其中负载服务实体(LSE)旨在选择最佳的客户子集,以最大程度地减少预期的负载,并通过财务预算减少。为了了解环境影响下的不确定的客户行为,我们将住宅DR提出为上下文的多军强盗(MAB)问题,并提出了基于Thompson采样的在线学习和选择(OLS)算法来解决它。该算法考虑了上下文信息,并适用于复杂的DR设置。进行数值模拟以证明所提出的算法的学习有效性。

Residential loads have great potential to enhance the efficiency and reliability of electricity systems via demand response (DR) programs. One major challenge in residential DR is to handle the unknown and uncertain customer behaviors. Previous works use learning techniques to predict customer DR behaviors, while the influence of time-varying environmental factors is generally neglected, which may lead to inaccurate prediction and inefficient load adjustment. In this paper, we consider the residential DR problem where the load service entity (LSE) aims to select an optimal subset of customers to maximize the expected load reduction with a financial budget. To learn the uncertain customer behaviors under the environmental influence, we formulate the residential DR as a contextual multi-armed bandit (MAB) problem, and the online learning and selection (OLS) algorithm based on Thompson sampling is proposed to solve it. This algorithm takes the contextual information into consideration and is applicable to complicated DR settings. Numerical simulations are performed to demonstrate the learning effectiveness of the proposed algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源