论文标题

提取与神经网络的同时OH-PLIF和PIV场中的信息重叠

Extracting Information Overlap in Simultaneous OH-PLIF and PIV Fields with Neural Networks

论文作者

Barwey, Shivam, Raman, Venkat, Steinberg, Adam

论文摘要

同时测量(例如,具有平面激光诱导的荧光(PLIF)的粒子图像速度法(PIV)的粒子图像速度法(PIV),用于物种场,用于实验性湍流燃烧应用中,用于分析复杂物理过程的Porthora。这种物理分析是由实验者对这些领域之间空间相关性的解释驱动的。但是,这些相关性也意味着一定程度的固有冗余。同时字段包含重叠的信息内容。这项工作的目的在于同时的现场测量中这种重叠信息内容的定量提取。具体而言,寻求同时测量的OH-PLIF场中包含的PIV信息量。使用基于人工神经网络的机器学习技术来完成此任务,该技术旨在优化PLIF到PIV映射。已经发现,当考虑大约两个积分长度范围(一半的被考虑域)的OH-PLIF信号的邻域的线性组合时,可以检索大多数速度信息含量,并且在较小的本地区域(小于域的一半)中包含的PLIF信号相互作用包含不包含PIV信息。此外,通过可视化神经网络参数中包含的相干结构,从OH-Plif信号中与速度场检索相关的多尺度相互作用的作用变得更加明显。总体而言,这项研究揭示了一种有用的途径(以重叠信息内容提取的形式)来开发诊断工具,该工具通过最大程度地减少冗余,使用相同的实验资源捕获更多信息。

Simultaneous measurements, such as the combination of particle image velocimetry (PIV) for velocity fields with planar laser induced fluorescence (PLIF) for species fields, are widely used in experimental turbulent combustion applications for the analysis of a plethora of complex physical processes. Such physical analyses are driven by the interpretation of spatial correlations between these fields by the experimenter. However, these correlations also imply some amount of intrinsic redundancy; the simultaneous fields contain overlapping information content. The goal of this work lies in the quantitative extraction of this overlapping information content in simultaneous field measurements. Specifically, the amount of PIV information contained in simultaneously measured OH-PLIF fields in the domain of a swirl-stabilized combustor is sought. This task is accomplished using machine learning techniques based on artificial neural networks designed to optimize PLIF-to-PIV mappings. It was found that most of the velocity information content could be retrieved when considering linear combinations of neighborhoods of OH-PLIF signal spanning roughly two integral lengthscales (half of the considered domain), and that PLIF signal interactions contained in smaller, local regions (less than half of the domain) contained no PIV information. Further, by visualizing the coherent structures contained within the neural network parameters, the role of multi-scale interactions related to velocity field retrieval from the OH-PLIF signal became more apparent. Overall, this study reveals a useful pathway (in the form of overlapping information content extraction) to develop diagnostic tools that capture more information using the same experimental resources by minimizing redundancy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源