论文标题
P.C.F.上BESOV空间的等效性自相似集
Equivalence of Besov spaces on p.c.f. self-similar sets
论文作者
论文摘要
在P.C.F.自相似的集合,其中的热核的步行尺寸通常大于2,我们找到了一个尖锐的区域,其中有两类的besov空间,热量besov空间$ b^{p,q}_σ(k)$和lipschitz-besov space $λ^{p,q} _t {p,q(k)$ nistialitical partialitical iticationalitical iticalitical politionalitical iticalitical politionalitical politionalitical politionalitical iticalitialitientallitationalitical iticalitical partialitical。特别是,我们提供了具体示例,即$ b^{p,q}_σ(k)=λ^{p,q}_σ(k)$,$σ> 1 $。我们的方法纯粹是分析性的,不涉及任何热核估计。
On p.c.f. self-similar sets, of which the walk dimensions of heat kernels are in general larger than 2, we find a sharp region where two classes of Besov spaces, the heat Besov spaces $B^{p,q}_σ(K)$ and the Lipschitz-Besov spaces $Λ^{p,q}_σ(K)$, are identitical. In particular, we provide concrete examples that $B^{p,q}_σ(K)=Λ^{p,q}_σ(K)$ with $σ>1$. Our method is purely analytical, and does not involve any heat kernel estimate.