论文标题
可将任务执行从像素通过深度计划域学习
Transferable Task Execution from Pixels through Deep Planning Domain Learning
论文作者
论文摘要
尽管机器人可以学习模型来从原始视觉输入中求解许多操纵任务,但他们通常不能使用这些模型来解决新问题。另一方面,诸如条带等符号计划方法长期以来能够仅考虑到域的定义和象征性目标,因此可以解决新的问题,但是由于在部分观察到的世界中从传感器数据中扎根这些符号的挑战,这些方法通常会在现实世界的机器人任务上挣扎。我们提出了深入的计划域学习(DPDL),这种方法结合了两种方法学习层次模型的优势。 DPDL学习了一个高级模型,该模型可预测由当前符号世界状态组成的大量逻辑谓词的值,并单独学习一个低级策略,该策略将符号运算符转化为机器人上可执行的操作。这使我们能够执行复杂的多步骤任务,即使没有对机器人进行明确训练。我们在影像厨房场景中展示了有关操纵任务的方法。
While robots can learn models to solve many manipulation tasks from raw visual input, they cannot usually use these models to solve new problems. On the other hand, symbolic planning methods such as STRIPS have long been able to solve new problems given only a domain definition and a symbolic goal, but these approaches often struggle on the real world robotic tasks due to the challenges of grounding these symbols from sensor data in a partially-observable world. We propose Deep Planning Domain Learning (DPDL), an approach that combines the strengths of both methods to learn a hierarchical model. DPDL learns a high-level model which predicts values for a large set of logical predicates consisting of the current symbolic world state, and separately learns a low-level policy which translates symbolic operators into executable actions on the robot. This allows us to perform complex, multi-step tasks even when the robot has not been explicitly trained on them. We show our method on manipulation tasks in a photorealistic kitchen scenario.