论文标题
量子爱因斯坦方程
Quantum Einstein equations
论文作者
论文摘要
我们从Bohmian量子重力中得出了量子爱因斯坦方程(这是经典重力的量子概括)。博学量子重力是一种非经典的几何动力学(在ADM形式主义中),描述了三个多种流形上3几何和物质领域(或其他物质自由度)的时间演变。进化是由由波函数定义的速度定律决定的。波函数本身满足Wheeler-Dewitt方程。我们将Bohmian动力学投入到爱因斯坦场方程的形式中,其中有趣的新颖性是对依赖量子电位的能量弹药张量的贡献。
We derive the quantum Einstein equations (which are the quantum generalisation of the Einstein equations of classical gravity) from Bohmian quantum gravity. Bohmian quantum gravity is a non-classical geometrodynamics (in the ADM formalism) which describes the time evolution of a 3-geometry and of a matter field (or other matter degrees of freedom) on a three manifold. The evolution is determined by a velocity law which is defined by the wave function. The wave function itself satisfies the Wheeler-DeWitt equation. We cast the Bohmian dynamics into the form of the Einstein field equations, where the interesting novelty is a contribution to the energy-momentum tensor that depends on the quantum potential.