论文标题
所有维循环量子重力中的一般几何算子
General geometric operators in all dimensional loop quantum gravity
论文作者
论文摘要
提出了在所有维环量子重力中构建一般几何算子的两种策略。不同的构造主要来自脱敏双重动量的两种不同的正则化方法,这些方法起着空间几何形状的作用。第一个正则化方法是对标准$(1+3)$ - 尺寸环量子重力的长度运算符正则化的概括,而第二种方法是标准(D-1) - 面积和D-VOLUME运算符的自然扩展。构建了两个版本的一般几何操作员,以测量任意$ m $ abareas,并讨论并进行了比较。它们是在任意维度中研究量子几何形状的宝贵候选者。
Two strategies for constructing general geometric operators in all dimensional loop quantum gravity are proposed. The different constructions are mainly come from the two different regularization methods for the de-densitized dual momentum, which play the role of building block for the spatial geometry. The first regularization method is a generalization of the regularization of the length operator in standard $(1+3)$-dimensional loop quantum gravity, while the second method is a natural extension of those for standard (D-1)-area and D-volume operators. Two versions of general geometric operators to measure arbitrary $m$-areas are constructed, and their properties are discussed and compared. They serve as valuable candidates to study the quantum geometry in arbitrary dimensions.