论文标题
DEEPCP:深度学习驱动的级联预测基于封闭的社交网络中的自主内容放置
DeepCP: Deep Learning Driven Cascade Prediction Based Autonomous Content Placement in Closed Social Network
论文作者
论文摘要
在线社交网络(OSN)正在成为最受欢迎的内容级联扩散平台。为了为OSN中的用户提供令人满意的经验质量(QOE),许多研究致力于使用传播模式,用户的个人资料和社交网络场景中的用户个人资料和社交关系(例如Twitter和Weibo)。在本文中,我们在封闭的社交网络(例如,微信时刻)中采取了新的知识内容放置方向,其中用户的隐私得到了高度增强。我们建议一个新颖的数据驱动的整体深度学习框架,即DEEPCP,用于联合扩散意识到的级联预测和自动内容放置,而无需利用用户的个人和社交信息。我们首先设计了一个时间窗口LSTM模型,用于内容流行度预测和级联地理分布估计。因此,我们进一步提出了一种新型的自主内容放置机制CP-GAN,该机制采用生成对抗网络(GAN)进行敏捷放置决策,以减少内容访问延迟并增强用户的QoE。我们使用微信矩(WM)中的级联扩散痕迹进行广泛的实验。评估结果证实了所提出的DEEPCP框架可以以高精度来预测内容的流行,实时产生有效的放置决策,并实现对现有方案的大量内容访问延迟。
Online social networks (OSNs) are emerging as the most popular mainstream platform for content cascade diffusion. In order to provide satisfactory quality of experience (QoE) for users in OSNs, much research dedicates to proactive content placement by using the propagation pattern, user's personal profiles and social relationships in open social network scenarios (e.g., Twitter and Weibo). In this paper, we take a new direction of popularity-aware content placement in a closed social network (e.g., WeChat Moment) where user's privacy is highly enhanced. We propose a novel data-driven holistic deep learning framework, namely DeepCP, for joint diffusion-aware cascade prediction and autonomous content placement without utilizing users' personal and social information. We first devise a time-window LSTM model for content popularity prediction and cascade geo-distribution estimation. Accordingly, we further propose a novel autonomous content placement mechanism CP-GAN which adopts the generative adversarial network (GAN) for agile placement decision making to reduce the content access latency and enhance users' QoE. We conduct extensive experiments using cascade diffusion traces in WeChat Moment (WM). Evaluation results corroborate that the proposed DeepCP framework can predict the content popularity with a high accuracy, generate efficient placement decision in a real-time manner, and achieve significant content access latency reduction over existing schemes.