论文标题
二元表示定理使用光滑的小波和紧凑的支撑
Dyadic representation theorem using smooth wavelets with compact support
论文作者
论文摘要
首先,在二元HAAR SHIFT运算符方面,将军Calderón-Zygmund运算符的表示是证明$ a_2 $定理的工具,并且已经找到了许多其他应用程序。在本文中,我们通过使用平滑的紧凑型小波来代替HAAR函数来证明一种新的二元表示定理。这样做的一个关键优势是,当将军Calderón-Zygmund操作员的内核具有额外的平滑度时,我们实现了更快的扩展衰减。
The representation of a general Calderón--Zygmund operator in terms of dyadic Haar shift operators first appeared as a tool to prove the $A_2$ theorem, and it has found a number of other applications. In this paper we prove a new dyadic representation theorem by using smooth compactly supported wavelets in place of Haar functions. A key advantage of this is that we achieve a faster decay of the expansion when the kernel of the general Calderón--Zygmund operator has additional smoothness.