论文标题

Weyl Semimetals和Spin $^C $ COBORDISM

Weyl semimetals and spin$^c$ cobordism

论文作者

Ertem, Ümit

论文摘要

拓扑绝缘子和超导体的分类以较低维度的自旋恢复基团的形式表现出来。讨论的是,拓扑绝缘子的周期表是相关拓扑材料的布里鲁因区域上旋转结构可能选择的结果。该框架扩展到Weyl半学的情况。结果表明,可以通过将旋转结构扩展到旋转$^c $结构的旋转$^c $ cobordism组来管理Weyl半法的分类。 Weyl半法的拓扑不变性与自旋$^c $ cobordism群的拓扑不变性相连,而Weyl Semimetals的Fermi弧是根据Spin $^c $结构的选择来解释的。

Classification of topological insulators and superconductors is manifested in terms of spin cobordism groups for lower dimensions. It is discussed that the periodic table of topological insulators is a result of the possible choices of spin structures on Brillouin zones of relevant topological materials. This framework is extended to the case of Weyl semimetals. It is shown that the classification of Weyl semimetals can be managed in terms of spin$^c$ cobordism groups via the extension of spin structures to spin$^c$ structures. Topological invariants of Weyl semimetals are connected to the topological invariants of spin$^c$ cobordism groups and Fermi arcs of Weyl semimetals are interpreted in terms of the choices of spin$^c$ structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源