论文标题

嵌入繁殖:几个射击分类的平滑歧管

Embedding Propagation: Smoother Manifold for Few-Shot Classification

论文作者

Rodríguez, Pau, Laradji, Issam, Drouin, Alexandre, Lacoste, Alexandre

论文摘要

很少有射击分类具有挑战性,因为训练集的数据分布可能与测试集有很大不同,因为他们的类是不相交的。这种分布转变通常会导致概括不佳。通过扩展决策边界并降低类表示的噪声,已证明流派平滑可以解决分配转移问题。此外,多种多样的平滑度是半监督学习和跨托学习算法的关键因素。在这项工作中,我们建议将嵌入式传播用作不受监督的非参数正规剂,以进行几次分类的歧管平滑。嵌入基于相似图的神经网络的提取特征之间的传播利用插值。我们从经验上表明,嵌入繁殖会产生更平稳的嵌入歧管。我们还表明,将嵌入式传播应用于跨传输分类器会在迷你象征,分层 - imagenet,Imagenet-fs和Cub中获得新的最新最先进。此外,我们表明,嵌入繁殖会始终如一地提高模型在多个半监督学习方案中的准确性,最多提高了16 \%的点。所提出的嵌入传播操作可以轻松地将其作为非参数层集成到神经网络中。我们在https://github.com/elementai/embedding-propagation上提供培训代码和使用示例。

Few-shot classification is challenging because the data distribution of the training set can be widely different to the test set as their classes are disjoint. This distribution shift often results in poor generalization. Manifold smoothing has been shown to address the distribution shift problem by extending the decision boundaries and reducing the noise of the class representations. Moreover, manifold smoothness is a key factor for semi-supervised learning and transductive learning algorithms. In this work, we propose to use embedding propagation as an unsupervised non-parametric regularizer for manifold smoothing in few-shot classification. Embedding propagation leverages interpolations between the extracted features of a neural network based on a similarity graph. We empirically show that embedding propagation yields a smoother embedding manifold. We also show that applying embedding propagation to a transductive classifier achieves new state-of-the-art results in mini-Imagenet, tiered-Imagenet, Imagenet-FS, and CUB. Furthermore, we show that embedding propagation consistently improves the accuracy of the models in multiple semi-supervised learning scenarios by up to 16\% points. The proposed embedding propagation operation can be easily integrated as a non-parametric layer into a neural network. We provide the training code and usage examples at https://github.com/ElementAI/embedding-propagation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源