论文标题

极端事件的空间依赖和时空趋势

Spatial dependence and space-time trend in extreme events

论文作者

Einmahl, John H. J., Ferreira, Ana, de Haan, Laurens, Neves, Claudia, Zhou, Chen

论文摘要

极端的统计理论扩展到了非平稳而不是独立的观察。在边际分布中通过SCEDASI(尾部尺度)控制了跨时间和空间的非平稳性。空间依赖性源于多元极端价值理论。我们基于所有观测值(随时间和空间)建立了加权顺序的尾部经验过程和加权尾片过程的渐近理论。结果产生了两次统计检验,以实现尾巴中的均匀性性,一个在空间中,一个在时间上。此外,我们表明,可以通过基于汇总所有(非平稳和依赖性)观测值的伪最大似然性程序来估算常见的极值指数。我们的主要例子和应用是德国北部的降雨。

The statistical theory of extremes is extended to observations that are non-stationary and not independent. The non-stationarity over time and space is controlled via the scedasis (tail scale) in the marginal distributions. Spatial dependence stems from multivariate extreme value theory. We establish asymptotic theory for both the weighted sequential tail empirical process and the weighted tail quantile process based on all observations, taken over time and space. The results yield two statistical tests for homoscedasticity in the tail, one in space and one in time. Further, we show that the common extreme value index can be estimated via a pseudo-maximum likelihood procedure based on pooling all (non-stationary and dependent) observations. Our leading example and application is rainfall in Northern Germany.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源