论文标题

复合费米斯的有限摩托明配对中的分数切绝缘子中的相互交织顺序

Intertwined Order in Fractional Chern Insulators from Finite-Momentum Pairing of Composite Fermions

论文作者

Sohal, Ramanjit, Fradkin, Eduardo

论文摘要

我们通过考虑晶格分数量子霍尔(FQH)的状态,研究了分数Chern绝缘子中相互交织的顺序问题,该状态是由平方晶格Hofstadter模型配对的复合费米子配对而产生的。在某些填充分数下,磁翻译对称性可确保复合费米子形成带有多个口袋的费米表面,从而在有吸引力的相互作用的情况下导致有限的摩托车库珀对形成。我们获得了表现出丰富的条纹和拓扑阶段阵列的平均场相图,建立了配对的晶格FQH状态,作为研究拓扑和常规损坏的对称顺序相互交织的理想平台。

We investigate the problem of intertwined orders in fractional Chern insulators by considering lattice fractional quantum Hall (FQH) states arising from pairing of composite fermions in the square-lattice Hofstadter model. At certain filling fractions, magnetic translation symmetry ensures the composite fermions form Fermi surfaces with multiple pockets, leading to the formation of finite-momentum Cooper pairs in the presence of attractive interactions. We obtain mean-field phase diagrams exhibiting a rich array of striped and topological phases, establishing paired lattice FQH states as an ideal platform to investigate the intertwining of topological and conventional broken symmetry order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源