论文标题

平均现场游戏和应用程序:数值方面

Mean Field Games and Applications: Numerical Aspects

论文作者

Achdou, Yves, Laurière, Mathieu

论文摘要

平均野外游戏的理论旨在研究确定性或随机差异游戏(NASH Equilibria),因为代理的数量倾向于无限。由于很少有平均现场游戏具有明确的或半明确的解决方案,因此数值模拟在从此类模型中获取定量信息方面起着至关重要的作用。它们可能导致耦合向后钟形方程和前向fokker-Planck方程的演变的部分微分方程系统。在本调查中,我们关注此类系统。前向后的结构是该系统的重要特征,这使得为数学分析和数值近似设计异常策略是必要的。在本调查中,讨论了用于近似前面提到的PDE系统的有限差异方法的几个方面,包括收敛性,变分方面和算法,用于求解所得的非线性方程系统。最后,我们详细讨论了平均野外游戏的两种应用与人群运动和宏观经济学研究的应用,这是与平均场类型控制的比较,以及当前的数值模拟。

The theory of mean field games aims at studying deterministic or stochastic differential games (Nash equilibria) as the number of agents tends to infinity. Since very few mean field games have explicit or semi-explicit solutions, numerical simulations play a crucial role in obtaining quantitative information from this class of models. They may lead to systems of evolutive partial differential equations coupling a backward Bellman equation and a forward Fokker-Planck equation. In the present survey, we focus on such systems. The forward-backward structure is an important feature of this system, which makes it necessary to design unusual strategies for mathematical analysis and numerical approximation. In this survey, several aspects of a finite difference method used to approximate the previously mentioned system of PDEs are discussed, including convergence, variational aspects and algorithms for solving the resulting systems of nonlinear equations. Finally, we discuss in details two applications of mean field games to the study of crowd motion and to macroeconomics, a comparison with mean field type control, and present numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源