论文标题
重新审视木星不规则月亮的分布:ii。轨道特征
Revisiting the distributions of Jupiter's irregular moons: II. orbital characteristics
论文作者
论文摘要
本文从统计上描述了木星不规则卫星的轨道分布定律,其中大多数是Ananke,Carme和Pasiphae群体的成员。通过比较19个已知的连续分布,可以证实存在适当的分布功能来描述这些天然卫星的轨道分布。对于每种分布类型,间隔估计用于估计相应的参数值。在给定的显着性水平上,应用一个样本的Kolmogorov-Smirnov非参数测试来验证指定的分布,我们经常选择具有最大$ p $ p $ - 价值的分布。结果表明,Ananke组和Carme组中的卫星的半轴轴,平均倾斜度和轨道周期服从稳定分布。此外,根据开普勒的第三条行星运动定律,并通过将理论上计算的最合适的累积分布函数(CDF)与观察到的CDF进行比较,我们证明了理论分布与经验分布非常吻合。因此,木星不规则卫星的这些特征确实很可能遵循某些特定的分布定律,并且可以使用这些法律来帮助研究未经研究的卫星的某些特征,甚至可以预测未发现的卫星。
This paper statistically describes the orbital distribution laws of Jupiter's irregular moons, most of which are members of the Ananke, Carme and Pasiphae groups. By comparing 19 known continuous distributions, it is verified that suitable distribution functions exist to describe the orbital distributions of these natural satellites. For each distribution type, interval estimation is used to estimate the corresponding parameter values. At a given significance level, a one-sample Kolmogorov-Smirnov non-parametric test is applied to verify the specified distribution, and we often select the one with the largest $p$-value. The results show that the semi-major axis, mean inclination and orbital period of the moons in the Ananke group and Carme group obey Stable distributions. In addition, according to Kepler's third law of planetary motion and by comparing the theoretically calculated best-fitting cumulative distribution function (CDF) with the observed CDF, we demonstrate that the theoretical distribution is in good agreement with the empirical distribution. Therefore, these characteristics of Jupiter's irregular moons are indeed very likely to follow some specific distribution laws, and it will be possible to use these laws to help study certain features of poorly investigated moons or even predict undiscovered ones.