论文标题
奇异亚临界抛物线方程的边界估计值
A Boundary Estimate for Singular Sub-Critical Parabolic Equations
论文作者
论文摘要
我们证明了对圆柱域的边界点的连续性模量的估计值,用于本地弱解决方案,用于$ p $ -laplacian类型的奇异抛物线方程,在亚临界范围$(1,\ frac {2n} {2n} {n+1}] $中,$ p $在weien nienal-wertiate中给出了一定的估计。 $ p $ - 容量。
We prove an estimate on the modulus of continuity at a boundary point of a cylindrical domain for local weak solutions to singular parabolic equations of $p$-laplacian type, with $p$ in the sub-critical range $(1,\frac{2N}{N+1}]$. The estimate is given in terms of a Wiener-type integral, defined by a proper elliptic $p$-capacity.