论文标题

相对论系统中的坐标转换下的瞬态混乱

Transient chaos under coordinate transformations in relativistic systems

论文作者

Fernández, D. S., López, Á. G., Seoane, J. M., Sanjuán, M. A. F.

论文摘要

我们将Hénon-Heiles系统用作混沌散射的范式模型,以研究Lorentz因子对其瞬态混沌动力学的影响。特别是,我们通过测量附着在粒子上的时钟中的时间来关注时间扩张在散射区域内的发生。我们观察到,粒子经历的几次时间扩张事件对初始条件表现出敏感性。但是,在逃逸时间函数中出现的奇异性的结构在坐标转换下仍然不变。之所以发生这种情况,是因为奇异性与混乱的马鞍密切相关。然后,我们使用类似Cantor的设定方法证明了逃生时间函数的分形维度相对论不变。为了验证此结果,我们通过不确定性维度算法计算逃生时间的分形维度,如惯性和与粒子框架共同测量所测量。我们得出的结论是,从数学的角度来看,混乱的瞬态现象在任何参考框架中同样可以预测,并且瞬态混乱是坐标不变的。

We use the Hénon-Heiles system as a paradigmatic model for chaotic scattering to study the Lorentz factor effects on its transient chaotic dynamics. In particular, we focus on how time dilation occurs within the scattering region by measuring the time in a clock attached to the particle. We observe that the several events of time dilation that the particle undergoes exhibit sensitivity to initial conditions. However, the structure of the singularities appearing in the escape time function remains invariant under coordinate transformations. This occurs because the singularities are closely related to the chaotic saddle. We then demonstrate using a Cantor-like set approach that the fractal dimension of the escape time function is relativistic invariant. In order to verify this result, we compute by means of the uncertainty dimension algorithm the fractal dimensions of the escape time functions as measured with inertial and comoving with the particle frames. We conclude that, from a mathematical point of view, chaotic transient phenomena are equally predictable in any reference frame and that transient chaos is coordinate invariant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源