论文标题

通用不变,Conway多项式和Casson-Walker-Lescop不变

Universal invariants, the Conway polynomial and the Casson-Walker-Lescop invariant

论文作者

Casejuane, Adrien, Meilhan, Jean-Baptiste

论文摘要

我们为Casson-Walker-Lesscop的一般手术公式提供了封闭的3个manifolds的不变,这是LMO不变的主要术语,以纯粹的图和组合方式。这为C. Lescop建立的公式扩展了Walker不变性,这提供了一个新的观点。我们证明中的一种主要成分是对康威多项式的系数的明确识别,作为Kontsevich积分中系数的组合。后一个结果依赖于Kontsevich积分系数的一般\ LQ分解公式\ RQ \。

We give a general surgery formula for the Casson-Walker-Lescop invariant of closed 3-manifolds, seen as the leading term of the LMO invariant, in a purely diagrammatic and combinatorial way. This provides a new viewpoint on a formula established by C. Lescop for her extension of the Walker invariant. A central ingredient in our proof is an explicit identification of the coefficients of the Conway polynomial as combinations of coefficients in the Kontsevich integral. This latter result relies on general \lq factorization formulas\rq\, for the Kontsevich integral coefficients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源