论文标题
右角的Coxeter和Artin组的右角ARTIN子组
Right-angled Artin subgroups of right-angled Coxeter and Artin groups
论文作者
论文摘要
我们确定某些自然类别的右角ox子组(RACG)和右角Artin群体(RAAGS)何时是Raags。我们表征了二维Racgs的有限索引视觉RAAG亚组。作为一种应用,我们表明,当且仅当它与RAAG相称时,任何具有平面定义图的二维单端RACG对于RAAG都是准时的。此外,我们给出了具有与RAAG相称的非平面定义图的新示例。 最后,我们给出了Dyer结果的新证明:RAAG发电机共轭产生的每个子组本身都是RAAG。
We determine when certain natural classes of subgroups of right-angled Coxeter groups (RACGs) and right-angled Artin groups (RAAGs) are themselves RAAGs. We characterize finite-index visual RAAG subgroups of 2-dimensional RACGs. As an application, we show that any 2-dimensional, one-ended RACG with planar defining graph is quasi-isometric to a RAAG if and only if it is commensurable to a RAAG. Additionally, we give new examples of RACGs with non-planar defining graphs which are commensurable to RAAGs. Finally, we give a new proof of a result of Dyer: every subgroup generated by conjugates of RAAG generators is itself a RAAG.