论文标题
Bargmann的Quaternionic分数Hankel变换与
Bargmann's versus of the quaternionic fractional Hankel transform
论文作者
论文摘要
我们研究了实际的半行转换的四个傅立叶变换的四元离子扩展,从而导致汉克尔变换。这将通过多形的第二个Bargmann转换来处理Bargmann,用于第二类Slice Bergman空间。基本属性得出,包括反转公式和plancherel身份。
We investigate the quaternionic extension of the fractional Fourier transform on the real half-line leading to fractional Hankel transform. This will be handled à la Bargmann by means of hyperholomorphic second Bargmann transform for the slice Bergman space of second kind. Basic properties are derived including inversion formula and Plancherel identity.