论文标题
通过模糊,检测和缓解来确保自动服务机器人
Securing Autonomous Service Robots through Fuzzing, Detection, and Mitigation
论文作者
论文摘要
自主服务机器人与人类共享社交空间,通常共同完成家庭或专业任务。网络安全违反了这样的机器人,破坏了人类和机器人之间的信任。在本文中,我们调查了如何在可移动自主服务机器人的设计和实施阶段逮捕和构成安全威胁。为此,我们利用了定向模糊和设计Robofuzz的想法,该想法系统地测试了与机器人状态和周围环境一致的自主服务机器人。 RoboFuzz的方法是研究影响机器人状态转换的关键环境参数,并以合理但有害的传感器值对机器人控制程序进行对待,以损害机器人。此外,我们开发了检测和缓解算法,以抵消Robofuzz的影响。困难主要在于有限的计算资源,及时检测和缓解工作效率的保留之间的权衡。特别是,我们提出了检测和缓解方法,以利用障碍的历史记录来检测有关不信任的传感器值的不一致的障碍物出现,并导航可移动的机器人继续移动以进行计划任务。通过这样做,我们设法保持了低成本的检测和缓解成本,但也保留了机器人的工作效率。我们已经原型了现实世界中可移动机器人中的Robofuzz,检测和缓解算法的束。实验结果证实,Robofuzz在对机器人施加混凝土威胁时的成功率最高为93.3%,而在缓解模式下,工作效率的总体损失仅为4.1%。
Autonomous service robots share social spaces with humans, usually working together for domestic or professional tasks. Cyber security breaches in such robots undermine the trust between humans and robots. In this paper, we investigate how to apprehend and inflict security threats at the design and implementation stage of a movable autonomous service robot. To this end, we leverage the idea of directed fuzzing and design RoboFuzz that systematically tests an autonomous service robot in line with the robot's states and the surrounding environment. The methodology of RoboFuzz is to study critical environmental parameters affecting the robot's state transitions and subject the robot control program with rational but harmful sensor values so as to compromise the robot. Furthermore, we develop detection and mitigation algorithms to counteract the impact of RoboFuzz. The difficulties mainly lie in the trade-off among limited computation resources, timely detection and the retention of work efficiency in mitigation. In particular, we propose detection and mitigation methods that take advantage of historical records of obstacles to detect inconsistent obstacle appearances regarding untrustworthy sensor values and navigate the movable robot to continue moving so as to carry on a planned task. By doing so, we manage to maintain a low cost for detection and mitigation but also retain the robot's work efficacy. We have prototyped the bundle of RoboFuzz, detection and mitigation algorithms in a real-world movable robot. Experimental results confirm that RoboFuzz makes a success rate of up to 93.3% in imposing concrete threats to the robot while the overall loss of work efficacy is merely 4.1% at the mitigation mode.