论文标题
某些近风函数的Starlikeness
Starlikeness for Certain Close-to-Star Functions
论文作者
论文摘要
我们发现订单$α$,$ 0 \ leqα<1 $的星空的半径是正常化的分析功能$ f $在单位磁盘上满足$ \ permatatorName {re}(f(z)/g(z)/g(z))> 0 $或$ \ weft | (f(z)/g(z)) - 1 \ right | <1 $,对于某些近距离 - 明星函数$ g $,带有$ \ operatatorName {re}(g(z)/(z+z^2/2))> 0 $以及近点的近点函数$ f $ f $ f $ f $ f $ fop $ f $ f $满足$ \ \ operation $ \ operateRonnAme {re} $} $ {z f(z)(z)/(z)/(z)/(z)/(z)/(z)/(z)/(z)/(z)/(z)^++^+^2/2/(z)/(z)/(z)^+++。其他几个半径,例如单位性和抛物线抛物性的半径,与适当秩序的星光般的半径相同。
We find the radius of starlikeness of order $α$, $0\leq α<1$, of normalized analytic functions $f$ on the unit disk satisfying either $\operatorname{Re}(f(z)/g(z))>0$ or $\left| (f(z)/g(z))-1\right|<1$ for some close-to-star function $g$ with $\operatorname{Re}(g(z)/(z+z^2/2))>0$ as well as of the class of close-to-star functions $f$ satisfying $\operatorname{Re}(f(z)/(z+z^2/2))>0$. Several other radii such as radius of univalence and parabolic starlikeness are shown to be the same as the radius of starlikeness of appropriate order.