论文标题

Syncgan:使用可学习的类特定先验来生成合成数据,以改善分类器的性能

SynCGAN: Using learnable class specific priors to generate synthetic data for improving classifier performance on cytological images

论文作者

Dey, Soumyajyoti, Das, Soham, Ghosh, Swarnendu, Mitra, Shyamali, Chakrabarty, Sukanta, Das, Nibaran

论文摘要

医学图像分析最具挑战性的方面之一是缺乏大量注释数据。这使得深度学习算法由于缺乏输入空间的变化而难以表现出色。虽然生成的对抗网络已经在合成数据生成领域表现出了希望,但是如果没有精心设计的事先生成过程,则无法很好地执行。在提出的方法中,我们证明了自动生成的分割蒙版用作可学习的类特异性先验的使用,以指导有条件的gan来生成病情现实的样本来进行细胞学图像。我们已经观察到,使用称为“ Syncgan”的拟议管道增强数据可显着改善诸如Resnet-152,Densenet-161,Inception-V3之类的最先进的分类器的性能。

One of the most challenging aspects of medical image analysis is the lack of a high quantity of annotated data. This makes it difficult for deep learning algorithms to perform well due to a lack of variations in the input space. While generative adversarial networks have shown promise in the field of synthetic data generation, but without a carefully designed prior the generation procedure can not be performed well. In the proposed approach we have demonstrated the use of automatically generated segmentation masks as learnable class-specific priors to guide a conditional GAN for the generation of patho-realistic samples for cytology image. We have observed that augmentation of data using the proposed pipeline called "SynCGAN" improves the performance of state of the art classifiers such as ResNet-152, DenseNet-161, Inception-V3 significantly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源