论文标题

多极流中的2D对流扩散

2D Convection-Diffusion in Multipolar Flows

论文作者

Boulais, Etienne, Gervais, Thomas

论文摘要

我们对低RE的对流扩散问题进行了完整的分析,具有奇异性分布的二维流,例如在开放空间微流体和地下水流中发现的分布。使用BousSinesQ变换并解决流线坐标中的问题,我们在高和低PE的源和水槽的流量中获得了浓度分布。这些在以前依赖于材料表面跟踪,局部肿块模型或数值分析(例如微流体探针,地下水热泵或多孔介质中的扩散流量)的应用中,在每个点都产生了完整的分析浓度曲线。使用共形变换,我们从简单的解决方案中产生对称溶液的家族,并提供一种通用方法,可用于分析任何源和下沉的排列。获得的解决方案包含对问题的各种参数的明确依赖性,例如PE,孔径的间距及其相对注入和抽吸率。特别是,我们表明,高PE模型可以在PE低至1的问题上建模,最大误差低于$ 10 \%$,并且此错误大约降低为$ pe^{ - 1.5} $。

We present a complete analysis of the problem of convection-diffusion in low Re, 2-dimensional flows with distributions of singularities, such as those found in open-space microfluidics and in groundwater flows. Using Boussinesq transformations and solving the problem in streamline coordinates, we obtain concentration profiles in flows with complex arrangements of sources and sinks for both high and low Pe. These yield the complete analytical concentration profile at every point in applications that previously relied on material surface tracking, local lump models or numerical analysis such as microfluidic probes, groundwater heat pumps, or diffusive flows in porous media. Using conformal transforms, we generate families of symmetrical solutions from simple ones, and provide a general methodology that can be used to analyze any arrangement of source and sinks. The solutions obtained that contain the explicit dependence on the various parameters of the problems, such as Pe, the spacing of the apertures and their relative injection and aspiration rates. In particular, we show that the high Pe models can model problems with Pe as low as 1 with a maximum error committed of under $10\%$, and that this error decreases approximately as $Pe^{-1.5}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源