论文标题

模型不可知的多层次解释

Model Agnostic Multilevel Explanations

论文作者

Ramamurthy, Karthikeyan Natesan, Vinzamuri, Bhanukiran, Zhang, Yunfeng, Dhurandhar, Amit

论文摘要

近年来,Black-Box模型的事后本地实例级别和全球数据集级别的解释性引起了很多关注。人们对在中级或小组级别上获得见解的关注要少得多,这在最近的著作中概述了研究在实现一般数据保护法规(GDPR)指南方面面临的挑战。在本文中,我们提出了一种元方法,鉴于典型的局部解释方法,可以构建多级解释树。该树的叶子对应于局部解释,根对应于全局解释,中间级别对应于自动簇的数据点组的解释。该方法还可以利用侧面信息,用户可以在其中指定可能希望解释相似的点。我们认为,这样的多级结构也可以是一种有效的通信形式,在这里,很少有人通过考虑在我们的解释树中考虑适当的级别来获得整个数据集的特征。可以通过将它们与最接近的培训点关联来获得新颖的测试点的解释。当局部解释性技术是广义的加性(即石灰,gams)时,我们会开发出一种快速近似算法,用于建造多层树并研究其收敛行为。我们基于两项人类研究(一项与专家,另一种与非专家用户)在现实世界数据集上验证了提出的技术的有效性,并表明我们在其他几个公共数据集上产生了高富裕性稀疏解释。

In recent years, post-hoc local instance-level and global dataset-level explainability of black-box models has received a lot of attention. Much less attention has been given to obtaining insights at intermediate or group levels, which is a need outlined in recent works that study the challenges in realizing the guidelines in the General Data Protection Regulation (GDPR). In this paper, we propose a meta-method that, given a typical local explainability method, can build a multilevel explanation tree. The leaves of this tree correspond to the local explanations, the root corresponds to the global explanation, and intermediate levels correspond to explanations for groups of data points that it automatically clusters. The method can also leverage side information, where users can specify points for which they may want the explanations to be similar. We argue that such a multilevel structure can also be an effective form of communication, where one could obtain few explanations that characterize the entire dataset by considering an appropriate level in our explanation tree. Explanations for novel test points can be cost-efficiently obtained by associating them with the closest training points. When the local explainability technique is generalized additive (viz. LIME, GAMs), we develop a fast approximate algorithm for building the multilevel tree and study its convergence behavior. We validate the effectiveness of the proposed technique based on two human studies -- one with experts and the other with non-expert users -- on real world datasets, and show that we produce high fidelity sparse explanations on several other public datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源