论文标题

泰勒扩展政策优化

Taylor Expansion Policy Optimization

论文作者

Tang, Yunhao, Valko, Michal, Munos, Rémi

论文摘要

在这项工作中,我们研究了泰勒扩展在增强学习中的应用。特别是,我们提出了泰勒扩展政策优化,这是一种策略优化形式主义,将先前的工作(例如TRPO)概括为一阶特殊情况。我们还表明,泰勒的扩张与非政策评估密切相关。最后,我们表明,这种新的配方需要修改,从而改善了几种最先进的分布式算法的性能。

In this work, we investigate the application of Taylor expansions in reinforcement learning. In particular, we propose Taylor expansion policy optimization, a policy optimization formalism that generalizes prior work (e.g., TRPO) as a first-order special case. We also show that Taylor expansions intimately relate to off-policy evaluation. Finally, we show that this new formulation entails modifications which improve the performance of several state-of-the-art distributed algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源