论文标题

从计算机断层扫描中进行下颌骨分割的经常性卷积神经网络

Recurrent convolutional neural networks for mandible segmentation from computed tomography

论文作者

Qiu, Bingjiang, Guo, Jiapan, Kraeima, Joep, Glas, Haye H., Borra, Ronald J. H., Witjes, Max J. H., van Ooijen, Peter M. A.

论文摘要

最近,基于深度学习方法的CT扫描中的准确下颌骨分割引起了很多关注。但是,仍然存在两个主要的挑战,即下颌骨之间的金属伪像,并且个体之间的形状或大小差异很大。为了应对这两个挑战,我们提出了一个经常性分割卷积神经网络(RSEGCNN),该卷积神经网络(RSEGCNN)将分割卷积神经网络(SEGCNN)嵌入到复发性神经网络(RNN)中,以进行稳健和准确的下颌骨分割。这种系统的设计考虑了在CT扫描中相邻图像切片中捕获的下颌骨形状的相似性和连续性。 RSEGCNN用嵌入式编码器分割(SEGCNN)组件基于复发结构的下颌信息。复发结构指导系统从相邻切片中利用相关和重要信息,而SEGCNN组件则集中于单个CT切片的下颌骨形状。我们进行了广泛的实验,以评估两个头部和颈部CT数据集上提出的RSEGCNN。实验结果表明,RSEGCNN明显优于准确的下颌骨分割模型。

Recently, accurate mandible segmentation in CT scans based on deep learning methods has attracted much attention. However, there still exist two major challenges, namely, metal artifacts among mandibles and large variations in shape or size among individuals. To address these two challenges, we propose a recurrent segmentation convolutional neural network (RSegCNN) that embeds segmentation convolutional neural network (SegCNN) into the recurrent neural network (RNN) for robust and accurate segmentation of the mandible. Such a design of the system takes into account the similarity and continuity of the mandible shapes captured in adjacent image slices in CT scans. The RSegCNN infers the mandible information based on the recurrent structure with the embedded encoder-decoder segmentation (SegCNN) components. The recurrent structure guides the system to exploit relevant and important information from adjacent slices, while the SegCNN component focuses on the mandible shapes from a single CT slice. We conducted extensive experiments to evaluate the proposed RSegCNN on two head and neck CT datasets. The experimental results show that the RSegCNN is significantly better than the state-of-the-art models for accurate mandible segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源