论文标题

正交组的旋转表示

Spinorial Representations of Orthogonal Groups

论文作者

Ganguly, Jyotirmoy, Joshi, Rohit

论文摘要

令$ g $为一个真正的紧凑型谎言组,这样$ g = g^0 \ rtimes c_2 $,$ g^0 $简单。这里$ g^0 $是包含身份的$ g $的连接组件,$ c_2 $是订单$ 2 $的环状组。我们给出了一个标准,即是否是正交表示$π:g \ to \ mathrm {o}(v)$提升到$ \ mathrm {pin}(v)$的最高权重$π$。我们还计算正交群体表示的第一和第二Stiefel-Whitney类。

Let $G$ be a real compact Lie group, such that $G=G^0\rtimes C_2$, with $G^0$ simple. Here $G^0$ is the connected component of $G$ containing the identity and $C_2$ is the cyclic group of order $2$. We give a criterion for whether an orthogonal representation $π: G \to \mathrm{O}(V)$ lifts to $\mathrm{Pin}(V)$ in terms of the highest weights of $π$. We also calculate the first and second Stiefel-Whitney classes of the representations of the Orthogonal groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源