论文标题

Bruhat顺序的自偶间隔

Self-dual intervals in the Bruhat order

论文作者

Gaetz, Christian, Gao, Yibo

论文摘要

Björner-ekedahl证明了Bruhat订单的一般间隔$ [e,w] $是“最高的”,至少在$ i $ th Corank中的元素与$ i $ -th的排名一样多。 Carrell和Lakshmibai-Sandhya的众所周知的结果给出了平等的情况:$ [e,w] $在且仅当排列$ w $避免使用$ 3412 $和$ 4231 $的情况下,这些$ W $正是这些$ W $,这些$ W $是Schubert Variety $ x_w $ x_w $ smoothe flooks flues。 在本文中,我们研究了等级间隔$ [e,w] $的更精细的结构,超出其等级功能。特别是,我们表明,如果一个人算出不同等级之间的关系,这些间隔仍然是“最重的”。当$ [e,w] $作为poset自式伪装时,在这种情况下的平等案例发生;我们通过图案避免和其他几种方式来表征这些$ w $。

Björner-Ekedahl prove that general intervals $[e,w]$ in Bruhat order are "top-heavy", with at least as many elements in the $i$-th corank as the $i$-th rank. Well-known results of Carrell and of Lakshmibai-Sandhya give the equality case: $[e,w]$ is rank-symmetric if and only if the permutation $w$ avoids the patterns $3412$ and $4231$ and these are exactly those $w$ such that the Schubert variety $X_w$ is smooth. In this paper we study the finer structure of rank-symmetric intervals $[e,w]$, beyond their rank functions. In particular, we show that these intervals are still "top-heavy" if one counts cover relations between different ranks. The equality case in this setting occurs when $[e,w]$ is self-dual as a poset; we characterize these $w$ by pattern avoidance and in several other ways.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源