论文标题

对称多项式的谎言代数的内部自动形态

Inner automorphisms of Lie algebras of symmetric polynomials

论文作者

Findik, Sehmus, Oguslu, Nazar Sahin

论文摘要

令$ l_ {n} $为免费的lie代数,$ f_ {n} $是免费的metabelian lie代数,$ l_ {n,c} $是免费的$ c $ c $ c $ c $ c $ lie代数等级$ n $ n $的免费metabelian nilpotent,由$ x_1,x_1,x_1 $ x_ $ a $ ken $ ken $ k $ ken $ k $ ken $ k $ ken。如果$ p(x_1,\ ldots,x_n)= p(x_ {π(1)},\ ldots,x_ {π(n))$,我们将每个元素的$ p(x_1,\ ldots,x_n)= p(x_1,\ ldots,x_n),x_ {π(n))$在这些元素中称为多项式$ p(x_n)$对称。集合$ l_n^{s_n} $,$ f_n^{s_n} $,以及$ l_ {n,c}^{s_n} $对称多项式的$与集团$ s_n $ in $ s_n $的代数相吻合, 分别。我们确定$ \ text {inn}(f_ {n}^{s_n})$和$ \ text {inn}(l_ {n,c}^{s_n})$的内部自动形态的$ f_ {n}^n}^n}^n}^{s_n} $ n} $ f_ {特别是,我们获得了组的描述$ \ text {aut}(l_ {2}^{s_2})$,$ \ \ \ text {aut}(f_ {2}^{s_2})$ $ l_ {2}^{s_2} $,$ f_ {2}^{s_2} $和$ l_ {2,c}^{s_2} $。

Let $L_{n}$ be the free Lie algebra, $F_{n}$ be the free metabelian Lie algebra, and $L_{n,c}$ be the free metabelian nilpotent of class $c$ Lie algebra of rank $n$ generated by $x_1,\ldots,x_n$ over a field $K$ of characteristic zero. We call a polynomial $p(X_n)$ symmetric in these Lie algebras if $p(x_1,\ldots,x_n)=p(x_{π(1)},\ldots,x_{π(n)})$ for each element $π$ of the symmetric group $S_n$. The sets $L_n^{S_n}$, $F_n^{S_n}$, and $L_{n,c}^{S_n}$ of symmetric polynomials coincide with the algebras of invariants of the group $S_n$ in $L_{n}$, $F_{n}$, and $L_{n,c}$, respectively. We determine the groups $\text{Inn}(F_{n}^{S_n})$ and $\text{Inn}(L_{n,c}^{S_n})$ of inner automorphisms of the algebras $F_{n}^{S_n}$ and $L_{n,c}^{S_n}$, respectively. In particular, we obtain the descriptions of the groups $\text{Aut}(L_{2}^{S_2})$, $\text{Aut}(F_{2}^{S_2})$, and $\text{Aut}(L_{2,c}^{S_2})$ of all automorphisms of the algebras $L_{2}^{S_2}$, $F_{2}^{S_2}$, and $L_{2,c}^{S_2}$, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源