论文标题

在最后一个零过程中,申请公司破产

On the last zero process with an application in corporate bankruptcy

论文作者

Baurdoux, Erik J., Pedraza, J. M.

论文摘要

对于频谱负Lévy流程$ x $,请考虑$ g_t $,上次$ x $低于时间$ t \ geq 0 $。我们使用一种扰动方法来用于lévy进程来为三维过程$ \ {(g_t,t,x_t),t \ geq 0 \} $及其无限发电机得出ITô公式。此外,使用$ u_t:= t-g_t $,当前正偏移的长度,我们得出了一个通用公式,使我们能够计算$(u,x)= \ {(u_t,x_t),t \ geq 0 \} $的整个路径的函数,以$ x $ x $的正面和负面偏移。作为推论,我们发现$(U _ {\ MathBf {e} _Q},X _ {\ MathBf {E} _Q})$的联合拉普拉斯变换,其中$ \ Mathbf {e} _q $是独立的指定时间,Q-Potential的Q-Potential量和Q-Potential量量;此外,使用上面提到的结果,我们找到了一种解决方案,该解决方案取决于$(u,x)$的一般最佳停止问题,并在公司破产中申请了。最后,我们建立了$ g _ {\ infty} $的最佳预测与根据Baurdoux和Pedraza(2024)的最佳预测与最佳停止问题之间的联系。

For a spectrally negative Lévy process $X$, consider $g_t$, the last time $X$ is below the level zero before time $t\geq 0$. We use a perturbation method for Lévy processes to derive an Itô formula for the three-dimensional process $\{(g_t,t, X_t), t\geq 0 \}$ and its infinitesimal generator. Moreover, with $U_t:=t-g_t$, the length of a current positive excursion, we derive a general formula that allows us to calculate a functional of the whole path of $ (U, X)=\{(U_t, X_t),t\geq 0\}$ in terms of the positive and negative excursions of the process $X$. As a corollary, we find the joint Laplace transform of $(U_{\mathbf{e}_q}, X_{\mathbf{e}_q})$, where $\mathbf{e}_q$ is an independent exponential time, and the q-potential measure of the process $(U, X)$. Furthermore, using the results mentioned above, we find a solution to a general optimal stopping problem depending on $(U, X)$ with an application in corporate bankruptcy. Lastly, we establish a link between the optimal prediction of $g_{\infty}$ and optimal stopping problems in terms of $(U, X)$ as per Baurdoux and Pedraza (2024).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源