论文标题
通过接触共振和超声扫描探针显微镜绘制悬浮和支持的多层石墨烯膜的纳米级动态特性
Mapping nanoscale dynamic properties of suspended and supported multi-layer graphene membranes via contact resonance and ultrasonic scanning probe microscopies
论文作者
论文摘要
石墨烯(GR)出色的机械和电气性能(例如其Young的模量,单位面积较低,天然原子平坦度和电导性)将使其成为微型和纳米机电系统(MEMS和NEMS)的理想材料。但是,将GR连接到支持的困难以及在几层GR中自然发生的内部缺陷,可能会对此类设备的性能产生严重影响。在这里,我们使用了组合的接触谐振原子力显微镜(CR-AFM)和超声波显微镜(UFM)方法来表征和映射,并使用纳米级空间分辨率GR膜性能无法访问大多数常规扫描探针表征技术。使用悬挂在圆孔上的多层GR板(膜),我们表明这种组合方法可以访问膜的机械性能,内部结构和附件几何形状,从而提供有关系统的支持和悬浮区域的信息。我们表明,UFM允许位于支撑的膜 - 底物接触的精确几何位置,并指示其在接触区域中其质量的局部变化。同时,我们表明,通过映射CR-AFM响应的位置敏感频率和相位响应,可以可靠地量化膜刚度,并对膜悬浮区域中的缺陷进行图像。实验CR-AFM测量的相位和幅度与分析模型相结合的CR-AFM探针探针系统的共振显示出了极好的一致性。 UFM和CR-AFM的组合为基于二维材料的几层NEMS系统提供了有益的组合。
Graphene (GR) remarkable mechanical and electrical properties - such as its Young's modulus, low mass per unit area, natural atomic flatness and electrical conductance - would make it an ideal material for micro and nanoelectromechanical systems (MEMS and NEMS). However, the difficulty of attaching GR to supports coupled with naturally occurring internal defects in a few-layer GR can significantly adversely affect the performance of such devices. Here, we have used a combined contact resonance atomic force microscopy (CR-AFM) and ultrasonic force microscopy (UFM) approach to characterise and map with nanoscale spatial resolution GR membrane properties inaccessible to most conventional scanning probe characterisation techniques. Using a multi-layer GR plate (membrane) suspended over a round hole we show that this combined approach allows access to the mechanical properties, internal structure and attachment geometry of the membrane providing information about both the supported and suspended regions of the system. We show that UFM allows the precise geometrical position of the supported membrane-substrate contact to be located and provides indication of the local variation of its quality in the contact areas. At the same time, we show that by mapping the position sensitive frequency and phase response of CR-AFM response, one can reliably quantify the membrane stiffness, and image the defects in the suspended area of the membrane. The phase and amplitude of experimental CR-AFM measurements show excellent agreement with an analytical model accounting for the resonance of the combined CR-AFM probe-membrane system. The combination of UFM and CR-AFM provide a beneficial combination for investigation of few-layer NEMS systems based on two dimensional materials.